



| Prepared for: | Project and Programme Sponsorship - Network Sponsorship                     |
|---------------|-----------------------------------------------------------------------------|
| By:           | TfL Engineering – Highways and Traffic                                      |
| Address:      | 3 <sup>rd</sup> Floor Palestra<br>197 Blackfriars Road<br>London<br>SEI 8NJ |

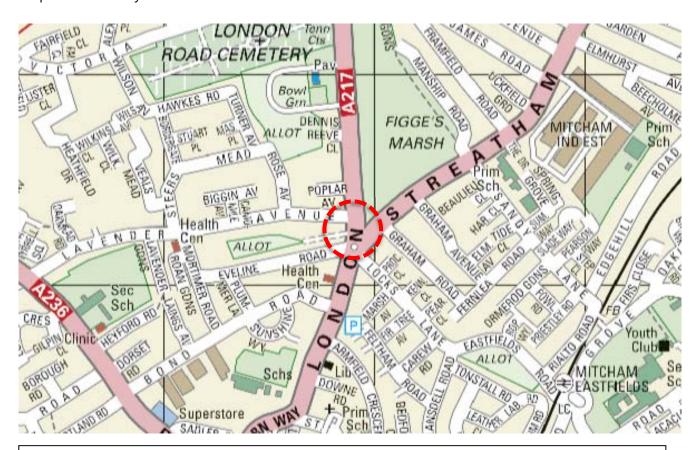
|            | Prepared by     | Checked by                | Approved by               |  |
|------------|-----------------|---------------------------|---------------------------|--|
| Name:      | Guy Thompson    | Sam Barnes                | Sam Barnes                |  |
| Position:  | Senior Engineer | Senior Engineering Leader | Senior Engineering Leader |  |
| Signature: | Ghrs,           | S. R. BARNES              | S. R. BARNES              |  |
| Date:      | 29/08/2018      | 30/08/2018                | 30/08/2018                |  |

| Version | Description             | Date       |
|---------|-------------------------|------------|
| Α       | Draft Issue for Comment | 04/09/2018 |
|         |                         |            |
|         |                         |            |



## **Executive Summary**

The technical note that follows covers the cost-benefit analysis for the feasibility design stage of the Figges Marsh scheme which is situated in the London Borough of Merton.


This note aims to provide a cost-benefit analysis for buses comparing the financial benefits of the scheme proposals compared with the impact (and potential financial losses) of diverting buses via Mitcham Town Centre during times of route curtailment or diversion for buses travelling southbound. The requirement of the diversion is a result of buses now being unable to turn left from London Road (southbound) into Streatham Road (north-eastbound) following the proposals to convert the existing roundabout to a traffic signalled junction.

The results of the cost-benefit analysis reveal that as long as the diversion is in place **for no more than 2.6 days out of every 7 (averaged across the year)**, then the scheme proposals will result in an overall **positive** financial benefit. This equates to running **62.7%** of the buses on the southbound route **without** a diversion to ensure a positive benefit.

## Location

The proposed scheme is located at the five-arm junction of the A2I7 London Road, A2I6 Streatham Road, Eveline Road and Lock's Lane. The junction is often colloquially known as Figges Marsh, named after the Common land located to the north to the junction.

A map of the study area is below:



Reproduced by permission of Geographers A-Z Map Co Ltd. This product includes mapping data licensed from Ordnance Survey. © Crown Copyright (2017) License No. 100017302

# **Bus Cost-Benefit Analysis**

#### **Data Required**

To obtain the bus cost benefit analysis, there are three things that are required for the calculation. As such for each bus route through the scheme we need to find the:

- Existing Bus Journey Times
- Proposed Bus Journey Times (VISSIM modelling results)
- Passenger Numbers (Passenger Volume Data).

### VISSIM Modelling Results (Bus Journey Times)

The journey times are possible to obtain from the VISSIM model produced as part of this scheme during the feasibility design stage.

Below is the extracted bus journey time results from both the **Base** model (existing bus journey times) and **Proposed** model (the bus journey times expected in the new layout), along with the difference between the two.

| Buses                             | Base |       | Proposed |     | Difference   |              |
|-----------------------------------|------|-------|----------|-----|--------------|--------------|
| Travel section                    | АМ   | PM    | AM       | PM  | AM           | PM           |
| 355, 280, 264 & 270<br>Northbound | 2-3  | 2-3   | 2-3      | 2-3 | No<br>change | No<br>change |
| 201 & 127<br>Northbound           | 1-2  | 1-2   | 1-2      | 1-2 | No<br>change | No<br>change |
| 355, 280, 264 & 270<br>Southbound | 2-3  | 3-4   | 2-3      | 2-3 | No<br>change | -(1-2)       |
| 201 & 127<br>Southbound           | 6-7  | 14-15 | 4-5      | 6-7 | -(1-2)       | -(4-5)       |
| 152<br>South-Westbound            | 5-6  | 3-4   | 2-3      | 3-4 | -(2-3)       | -(0-1)       |
| 152<br>South-Eastbound            | 1-2  | 1-2   | 0-1      | 1-2 | No<br>change | No<br>change |

Figures highlighted in green in the 'difference' column show where a journey time saving has been achieved, likely leading to a positive financial return.

For the purposes of the calculation we have assumed the higher of the two values when a range of journey times are displayed.



#### Passengers Volume Data

The number of passengers can be obtained from the ODX data, which is based upon Oyster / Contactless card usage on the buses. NB: This data was taken in 2016 (latest available at time of study).

The figures below show the average weekday daily "on the bus" passenger figures of all the stop-to-stop links along the route. This is broken down per peak, route and direction of the service.

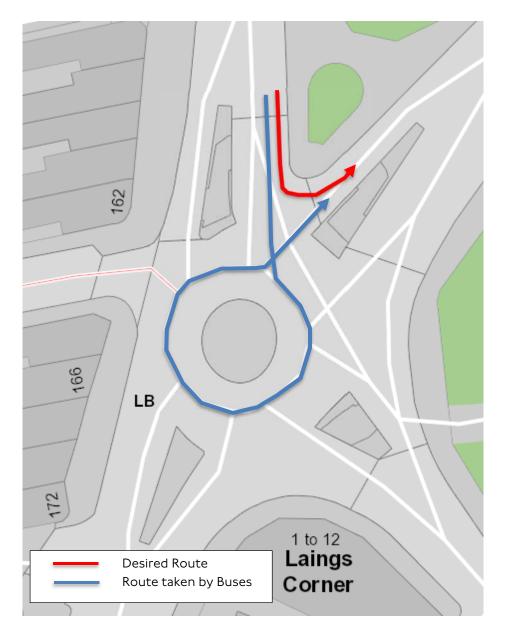
| Route | Direction       | Peak<br>(3 hour time period) | Average Daily<br>Bus Count | Average Daily <sup>I</sup><br>Bus Passengers |
|-------|-----------------|------------------------------|----------------------------|----------------------------------------------|
| 127   | Northbound      | AM                           | 14                         | 209                                          |
| 127   | Northbound      | PM                           | 14                         | 286                                          |
| 127   | Southbound      | AM                           | 14                         | 298                                          |
| 127   | Southbound      | PM                           | 13                         | 208                                          |
| 152   | South-Westbound | AM                           | 15                         | 310                                          |
| 152   | South-Westbound | PM                           | 15                         | 163                                          |
| 152   | South-Eastbound | AM                           | 13                         | 149                                          |
| 152   | South-Eastbound | PM                           | 15                         | 299                                          |
| 201   | Northbound      | AM                           | 11                         | 192                                          |
| 201   | Northbound      | PM                           | 11                         | 248                                          |
| 201   | Southbound      | AM                           | 11                         | 279                                          |
| 201   | Southbound      | PM                           | 11                         | 173                                          |
| 264   | Northbound      | AM                           | 15                         | 576                                          |
| 264   | Northbound      | PM                           | 15                         | 451                                          |
| 264   | Southbound      | AM                           | 16                         | 403                                          |
| 264   | Southbound      | PM                           | 16                         | 611                                          |
| 270   | Southbound      | AM                           | 16                         | 160                                          |
| 270   | Southbound      | PM                           | 17                         | 364                                          |
| 270   | Northbound      | AM                           | 18                         | 467                                          |
| 270   | Northbound      | PM                           | 16                         | 196                                          |
| 280   | Southbound      | AM                           | 18                         | 495                                          |
| 280   | Southbound      | PM                           | 17                         | 667                                          |
| 280   | Northbound      | AM                           | 17                         | 616                                          |
| 280   | Northbound      | PM                           | 18                         | 463                                          |
| 355   | Northbound      | AM                           | 15                         | 274                                          |
| 355   | Northbound      | PM                           | 14                         | 162                                          |
| 355   | Southbound      | AM                           | 14                         | 117                                          |
| 355   | Southbound      | PM                           | 15                         | 208                                          |

<sup>&</sup>lt;sup>1</sup> This is the total number of all bus passengers travelling for that particular bus services across the 3 hour peak time period.



## **Economic Benefit Calculation**

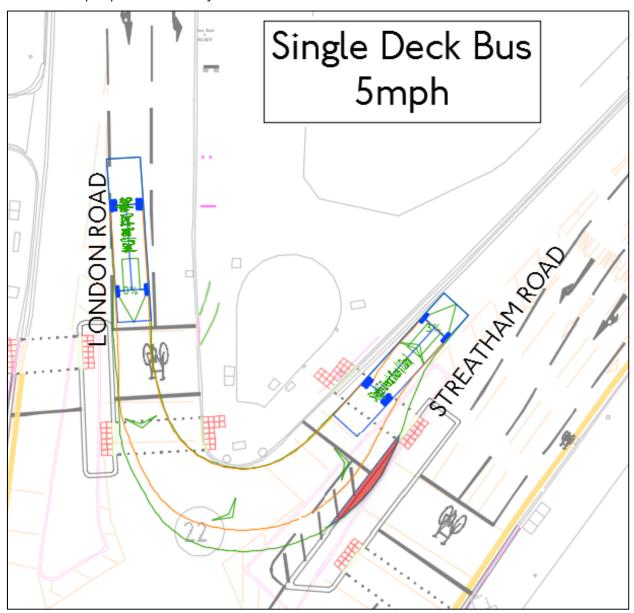
| Time<br>Period                  | Route               | Direction       | Passengers<br>(per day,<br>per Period) | Journey<br>Time<br>Before<br>(secs) | Journey<br>Time<br>After<br>(secs) | Journey<br>Time<br>Difference<br>(secs) | Economic<br>Benefit<br>(£ p.a.) |
|---------------------------------|---------------------|-----------------|----------------------------------------|-------------------------------------|------------------------------------|-----------------------------------------|---------------------------------|
|                                 | 355, 280, 264 & 270 | Northbound      | 1932                                   | 180                                 | 180                                | 0                                       | 0                               |
|                                 | 201 & 127           | Northbound      | 401                                    | 120                                 | 120                                | 0                                       | 0                               |
| AM<br>Peak                      | 355, 280, 264 & 270 | Southbound      | 1174                                   | 180                                 | 180                                | 0                                       | 0                               |
| (07:00-<br>09:59)               | 201 & 127           | Southbound      | 576                                    | 420                                 | 300                                | -120                                    | £35,904                         |
|                                 | 152                 | South-westbound | 310                                    | 360                                 | 180                                | -180                                    | £28,985                         |
|                                 | 152                 | South-eastbound | 149                                    | 120                                 | 60                                 | -60                                     | £4,644                          |
|                                 | 355, 280, 264 & 270 | Northbound      | 1272                                   | 180                                 | 180                                | 0                                       | 0                               |
|                                 | 201 & 127           | Northbound      | 533                                    | 120                                 | 120                                | 0                                       | 0                               |
| PM<br>Peak<br>(16:00-<br>18:59) | 355, 280, 264 & 270 | Southbound      | 1849                                   | 240                                 | 180                                | -60                                     | £57,627                         |
|                                 | 201 & 127           | Southbound      | 381                                    | 900                                 | 420                                | -480                                    | £94,996                         |
|                                 | 152                 | South-westbound | 163                                    | 240                                 | 240                                | 0                                       | 0                               |
|                                 | 152                 | South-eastbound | 299                                    | 120                                 | 120                                | 0                                       | 0                               |
|                                 | Total £222,156      |                 |                                        |                                     |                                    |                                         |                                 |




## **Bus Route Resilience**

# Left Turn from London Road (northern arm) into Streatham Road (north-eastern arm)

During stakeholder liaison, TfL Engineering were informed by the local bus operators that the left turn from London Road (southbound) into Streatham Road (north-eastbound) is often used by buses on diversion or for routes that have been curtailed.


The existing geometry of the junction is very tight, making the left turn hard for a larger vehicle, such as a bus, to physically make the left turn directly. To overcome this issue, buses would travel around the roundabout to align themselves with the exit. The diagram below indicates the left turn (in red) and the route taken by buses to reach Streatham Road (in blue).

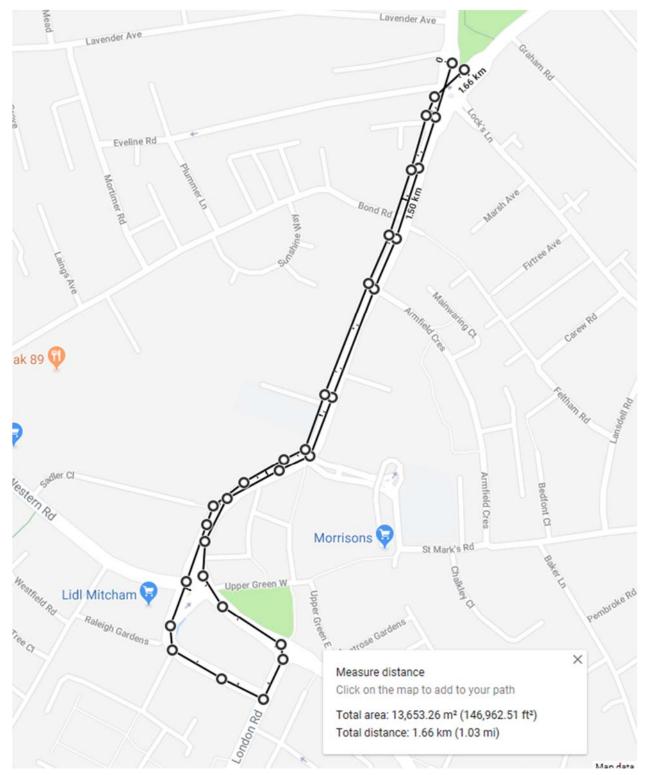


Whilst vehicles can make the turn by utilising the roundabout in the current layout, the new layout will involve the removal of the roundabout to accommodate full signalisation.



The vehicle tracking drawing below shows a double decker bus attempting to make the left turn under the proposed new layout.




As can be seen above, the tracking shows that the overhang of the bus encroaches on the central pedestrian island on Streatham Road. As a further and potentially more serious issue, the bus has to make the turn from the offside lane (the turn is not physically possible from the nearside lane). Turning from the offside lane would be a safety critical issue, due to the high chance that a turning bus would be involved in a 'left turn hook' collision with a vehicle on the nearside lane travelling straight ahead.

Even under the assumption that the curtailment of the bus routes or need for diversion would be a relatively rare occurrence, the left turn manoeuvre cannot be safely accommodated and should therefore not be promoted by the design team to Bus Operations. As such buses would have to access Streatham Road by another means.



#### **Diversion Route**

The most likely alterative diversion route (when a bus needs to reach Streatham Road from London road) would be to continue travelling south towards Mitcham Town Centre and utilise the one-way system to return to Figges Marsh. The potential alternative route (totalling a distance of I.66km) is shown in the map below.





#### **Economic Impact of diversion**

To calculate the economic impact we would need to find the average cruise speed of a bus along the link. As no data is currently available, we have assumed a cruise speed of 9.8mph, taken from the TfL publication of the Buses Performance Data - Bus speeds reports for Merton. (https://tfl.gov.uk/corporate/publications-and-reports/buses-performance-data#on-this-page-4)

A diversion distance of **I.66km** at an assumed **9.8mph** average cruise speed would take an **extra** 6 minutes and I9 seconds (or **379 seconds**) to complete.

This diversion would impact routes 264, 270, 280 and 355 in the southbound direction only.

As such we will only look at the impact to that route in our data.

|                                       | Impact of Diversion (via Mitcham Town Centre) |            |                          |                                           |                                           |  |
|---------------------------------------|-----------------------------------------------|------------|--------------------------|-------------------------------------------|-------------------------------------------|--|
| Time<br>Period                        | Route                                         | Direction  | Passengers per<br>Period | Extra Journey<br>Time to divert<br>(secs) | Economic cost<br>of diversion<br>(£ p.a.) |  |
| AM Peak                               | 355, 280, 264, 270                            | Southbound | 1174                     | 379                                       | £231,124.73                               |  |
| PM Peak                               | 355, 280, 264, 270                            | Southbound | 1849                     | 379                                       | £364,011.60                               |  |
| Total cost of diversion (£ per annum) |                                               |            |                          |                                           | £595,136.33                               |  |
| Total cost of diversion (£ per day)   |                                               |            |                          |                                           | £1,630.51                                 |  |

Note that overall the scheme proposals have the following financial benefit:

| Economic benefit of scheme (£ per annum) | £222,156.00 |
|------------------------------------------|-------------|
| Economic benefit of scheme (£ per day)   | £608.65     |

As such, whilst the diversion of the buses will  $cost\ \emph{£}1,630.51\ per\ day$ , every day where normal bus operations are provided would yield an economic benefit of  $\emph{£}608.65\ per\ day$ .

Therefore by dividing the two figures against each other, it can be calculated the level of service required (averaged over a year) to avoid a negative economic benefit.

$$\left(1 - \frac{£608.65}{£1630.51}\right) \times 100 = 62.7\%$$

Therefore, TfL would need to run **62.7%** of the buses on the southbound route <u>without</u> a diversion to avoid a negative economic benefit.

In more simplistic terms, over the course of a week (7 days) TfL should ensure that the diversion route should run for <u>no more</u> than **2.6 days** out of every **7** when averaged over the course of a calendar year.



Samuel Barnes Contact

Transport Infrastructure – Streets and Places

TfL Engineering

SamuelBarnes@tfl.gov.uk 020 3054 5833 Email

Phone

